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Branching pipelines through which liquid or gas enters some medium oriswith- 

drawn from it are wide-spread in nature and technology (blood circulationand 

respiratory systems, irrigation systems, etc.). In the present work, simple hypo- 

theses of similarity, of boundedness of the volume of transported fluid and of 
minimum hydraulic, resistance, the pipeline configuration is determined, and ba- 

sic principles are established for determination of the length and cross-sectional 

areas of pipelines in dependence of their order(distance from source) . results 
are compared with experimental data. 

1. Statement of the problem, Let us consider a branching pipeline for the 
supply (or extraction) of liquid or gas to a certain region D, of a two- or three-dimen- 
sional space. The dimensionality of that space will be denoted by v = 2, 3 . Thepipe- 
line is to begin at some point (source or sink) and the ends of its branches must cover 

the specified region Do fairly uniformly and densely to ensure the supply of transported 

fluid to the neighborhood of any point of the region. 

We admit the following basic hypotheses. 
1. The pipeline is laid out according to the hierarchicalprinciple: each pipe of 

the n-th order branches into two pipes of the (n + I) -th order, n = 0,2, . . . . N. In the 
terminology of the theory of graph the pipeline is a dichotomic tree. 

2. All 2n pipes of n-th order are of the same length !n and of the same cross- 

sectional area sn, n = 0, 1, . . . . N. 
3. Region D,,supplied by any IZ-th order pipe with all its branches is divided at 

the branching of that pipe into two symmetric regions D,,+r which are fed by (n $- 1) - 
st order pipes. These regions are similar to region D,. The branching point lies in the 

plane of symmetry of region D,. 
4. The optimality of the sought pipeline is defined as follows: its total hydraulic 

resistence is the lowest of all pipelines which satisfy hypotheses l- 3 and have thespe- 

cified total volume Q. 
Note that the fulfilment of the 3-rd hypothesis ensures for a reasonably high N the 

supply of the transported fluid to any specified arbitrarily small neighborhood of any 

point of region D,. 
The 4-th hypothesis directly implies that all pipes must be straight. It is obvious that 

for any specified position of branching point it is the straight pipes that have the lowest 

hydraulic resistance for the specified volume. 
Let us pass to the determination of the pipeline layout that would satisfy the imposed 

conditions. We have to determine the pipeline configuration, the shape of regions.D, 

supplied by n-th order pipes, the pipe lengths tn, and their cross-sectional areas K. 

2. The geometry of region,. We use the 3-rd hypothesis for determining 
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the shape of regions I_),. Let us show that in the two-dimensional case regions 0, can 
be either rectangles with the ratio of sides 

(Jo : L, = l/T (2.U 

or isosceles right triangles. In the three-dimensional case regions D, that satisfy the 

3-rd condition are right angle parallelepipeds with the ratio of edges 

L ” : L, : L, = 2”’ : 2”’ : 1 (2.2) 

First, we consider the two-dimensional case Y = 2 and assume that the parent region 
D, is bounded by a piecewise smooth curve consisting of segments of straight lines and 
curved arcs. Let the over-all length of curvilinear section arcs be a. As the result of 

branching region D, is divided into 2” equal regions D, similar to region D,. All li- 
near dimensions of region D, are 2nf2 -times smaller than those of region D,, hence 
the over-all length of curvilinear sections of a single D, region is equal 2-n’2a, and for 
all 2*-regions D, it is equal 2n12a. However each region is divided in half by its axis 
of symmetry at bifurcation, which means that no new curvilinear sections are added +, 
The over-all length of all curvilinear sections of boundaries of D, regions is thus equal 

a and simultaneously equal 2n% This implies that a = 0 and that all D, regions are 

polygons, n = 0, 1 ,. . ., N. It can be similarly proved that in the three-dimensional 
case all D, regions are polyhedrons. 

Let us determine the possible shapes of polygons D, (or D,) in the two-dimensional 
case. The polygon Do must have an axis of symmetry which divides it into two equal 

polygons D, similar to D,. It follows from this that D,, and D, are simply connected 
polygons. Let k be the number of sides of polygon D, and let its axis of symmetry in- 

tersect k, of these. Owing to simple connectedness, k, 6 2. The over-all number of 
sides of polygons D, is 2k. On the other hand, that number is k + k 1 + 2, sinceat each 
bifurcation each of the Ic, sides is divided in two, and besides this, a side is added to each 

polygon owing to symmetry. Equality 2k = k + k, + 2 and the inequality k, < 2 im- 
ply that k < 4, i.e. that D,, is either a quadrangle or a triangle. 

When D, is a quadrangle, the axis of symmetry must divide it in two quadrangles. 

Hence the axis of symmetry intersects two opposite sides of the quadrangle and owing to 

symmetry it must be perpendicular to these sides. Consequently these sides are parallel 
and region D, is a trapezoid and, because of symmetry, it must be isosceles. The regions 
D, into which it is divided by the axis of symmetry are rectangular trapezoids similar 

to u, . This shows that D,, is an isosceles rectangular trapezoid, i. e. a rectangle. We 
denote the larger and the smaller sides of this rectangle D, by L, and L, , respectively. 
If the rectangle with obtained by halving D,, is to be similar to the latter, its sides L, 

and L, / 2 must satisfy the relationship (2.1). 
When I),, is a triangle, it must have an axis of symmetry, i. e. be an isosceles trian- 

gle. Its division yields a right triangle, hence, because of similarity, the parent triangle 

must also be a right one. 
Thus in the two-dimensional case region D, and all D, regions can be either rectan- 

gles with sides whose ratio satisfies (2. l), or isosceles right triangles. 

Let us now consider the three-dimensional case. Let D, be a polyhedron of k faces 
with the plane of symmetry intersecting k, of these. A reasoning similar to that in the 
two-dimensional case yields the equality k = kr + 2. Hence only two faces of poly- 
hedron D, are not intersected by the axis of symmetry. These faces are symmetric with 
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respect to the plane of symmetry ; we shall call them “bases”. The remaining k, faces 
are normal to the plane of symmetry and will be called “lateral” faces. Consequently, 

the polyhedron Do is the result of truncation of k, -faced prism by two symmetric bases. 
The lateral faces are symmetric with respect to the plane of symmetry of region D, and 
can be isosceles trapezoids or isosceles triangles. The bases are polygons of j sides with 
j = k, when the base has no common points with plane of symmetry or has a single ver- 

tex in that plane, and j = k, + 1 when one side of the base lies in the plane of symmet- 
ry. The halving of region D, yields two polyhedrons, and in the plane of symmetry the 
faces have j sides. Because of the similarity of obtained polyhedrons to the parent one, 
all their dimensions are 2’18 times smaller and the areas of similar faces 88 times 
smaller than the corresponding dimensions and areas of D, , 

There are three mutually exclusive cases: 
a) all lateral faces are triangles and I’ = 3 ; 
b) all lateral faces are trapezoids and i = 4; 

c) there is at least one lateral face (a triangle or a trapezoid) the number ofwhcse 
sides is not equal to the number of sides of the base i. 

In the case (c) the over-all area of all those faces whose number of sides is not equal 
i, is reduced by half when the polyhedron D, is divided in half. Hence in that case the 

condition of area similarity is not satisfied. 

In case (a) region D, is a triangular pyramid ABCD whose plane of symmetry is BCK 

(Fig. 1). Angles AKC and AKB are 
A K 

D right angles,since the plane of sym- 

metry is perpendicular to edge AD . 
Thus two right angles adjoin the ver- 
tex K of pyramid ABCK. Since py- 
ramid ABCK is similat to the parent 

pyramid ABCD, hence two right an- 

gles must adjoin one of the vertices 

of the 1atterPwing to symmetry trian- 
gles A CD and A BD are isosceles and 

B their angles CAD,ADC, BAD and 

Fig. 1 ADB are acute. Hence two right an- 
gles in pyramid ABCD can only ad- 

join vertices B or C. Let the two right angles adjoin vertex B . Because of Symmetry 

these must be angles ABC and DBC. Thus in the pyramid ABCK the face ABC 

which does not adjoin vertex K is a right triangle. In the parent pyramid ABCD ver- 
tex B is the analog of vertex K in pyramid ABCK to which adjoin two right angles. 

Hence face ACD which does not adjoin it must also be a right triangle. 
Thus triangles ACD and ABC are isosceles and right, and face ABC of pyramid 

ABCK is the analog of face ACD of the parent pyramid ABCD (both these faces are 

opposite vertices K and B , respectively, of these pyramids). Consequently the linear 
dimensions of these triangles must differ by a factor of 2”’ . However the leg AC of 
triangle ACD is the hypotenuse of triangle ABC, hence their linear dimensions differ 

by a factor of $” . This contradiction eliminates case (a). 

In the remaining case (b) the polyhedron D,, has only six tetragonal faces of which 

four are lateral faces and two are bases. The plane of symmetry is perpendicular to the 
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four lateral faces, hence after division the polyhedron obtains a face that is perpendicu- 
lar to four adjacent faces. Hence the parent polyhedron must also have a face that is 

normal to all four faces adjacent to it. Whether that face is a lateral or a base face, 

the base is in both cases perpendicular to lateral faces. This means that D, is a straight 
prism with a tetragonal base. If the base is not a tetragon, the halving reduces the over- 

all area of all rectangular (lateral) faces by half, which contradicts the condition of area 
reduction by a factor of 2”, at division. Hence all faces of D, are rectangles and D, 

is a rectangular parallelepiped. We denote its edges by L,, L, and L, with L, > L1 > 

L,. The plane of symmetry which is normal to the longest edge must divide parallele- 
piped D, into two parallelepipeds similar to the parent one. Hence we have 

L 0 : L, : L, = L, : L, : (L, / 2) 

Formula (2.2) follows from this ratio. Thus in the three-dimensional case the rectangu- 

lar parallelepiped whose edges satisfy the relation (2.2) is the only shape that satisfies 
the 3-rd hypothesis. 

3. The length of piper. Let us derive the expression for the length I, of 
n -th order pipes. Let L, be the characteristic linear dimension of region D, equal to 
its longest side with the ratio of sides satisfying (2.1) in the case of rectangular regions ; 
in the case of isosceles right triangle regions, equal to the foot of the triangle, and in the 
case of parallelepipeds whose edges satisfy the relation (2.2) to the longest edge. Since 
each division reduces all linear dimensions by a factor of 2r’” ,hence 

4l = -QJ,, L,, = 2+‘“4,; v = 2, 3; n = 0, 1 ,. . ., N (3.1) 

The dimensionless quantity qn depends on the space dimensionality v, the shape of 

the region, and on the position of branching points which lie in the corresponding planes 
of symmetry. 

Fig. 2 

In the case of rectangular region D, whose sides satisfy relation (2. l), we denote by 
2, the ratio in which the longest side L, of the rectangle D, is divided by the beginning 
of the n-th order pipe. Elementary geometrical considerations (see Fig. 2 where L, = 
Ij show tildt 
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‘Pn = cp (x,7 x,+1 ) = [(x, - l/2)2 + x;+1 / Zl”, (3.2) 
O,<x,<l, n = 0, 1 ,. . ., N 

For region D, in the form of an isosceles right triangle 2, represents the ratio in which 

the leg of the triangle is divided by the beginning of the n -th order pipe. The quantity 
z,is read off from the right angle vertex of the triangle (see Fig. 3 where L, = 1). We 

have 
(pn = cp (x,, z,+J = {]zn - (1 - r,+J i 212 + [Cl - Zn+J / 21”)“” (3.3) 

In the three-dimensional case of the parallelepiped whose ratio of ribs satisfies (2.2) 

we set, for simplicity, L, = 1. We set a Cartesian system of coordinates so that it co- 
incides with the parallelepiped axes and that the parallelepiped lies in the first octant 

0 < x < 1, 0 5 y < 2-l”, 0 < z Q 2-“5 

Let the beginning of the n-th order pipe lie in the plane z = 0 at coordinates +, yn 

related to the dimension L, . The end of that pipe at which it branches into pipes of 
order (n i- 1) lies in the plane of symmetry r = 1/2 of the parallelepiped D, at coor- 

dinates i12, ~~+i2-“~, yn+r2-‘la. We take here into account that L, = 1 and L,+l = 2-“‘. 

From this we obtain for ‘Pn from formula (3.1) an expression of the form 

‘Pn = cp (x,, Ynn; x,+1! Yn+J = t&l - ‘/2Y + (Y, - ~~+pT + (3.4) 
y;+12-*‘s]“p, O<x,dl, 0 < y,, Q 2-l”, n = 0, 1 ,. . ., N 

If one takes into account that not only regions D, are similar to each other for various 

n, but also the points of branching have similar positions relative to corresponding re- 
gions, it is necessary to set in formulas (3.2) and (3.3) 

XT1 = x*, (Pn = ‘p (x*, 29 = 9* (3.5) 

in formula (3.4) we then have 

X* 
* 

2, = ,y,=y 9 ‘Pn = cp (z*, x*; y*, y*) = v* 
(3.6) 

where x* and y* are some constants. We shall call such pipelines regular. 

The values of t* and y* for regular pipe- 
lines at which parameter v* in (3.5) or(3.6) 
reaches its maximum are of interest. They 
correspond to the optimal regular configura- 
tion of the pipeline with the minimumlength 

of all pipes. To determine such configura- 

tion in the case of rectangular regions we 

substitute zn= x,+r = xx into formula (3.2) 
and find its minimum with respect to x*. 
As the result we have 

x* = ‘I,, ‘p* = 12-“2 z 0.2887 (3.7) 

Similar calculations by formula (3.3) for 
Xn triangular regions yield 

Fig. 3 x* = 0.4, ‘p* = to-‘!’ z 0,3162 (3.8) 

For three-dimensional regions in the form of parallelepipeds the determination of 
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minimum of function (3.4) with respect to variables J+ = Tag,, == x* and !lrr !Irrtl 

!I”> yields the following relationships : 

2.e _ 2 ‘ -x,:1 (24’3 - 1) :;-I =_ 0.4092 (3.9) 
?/* = 

( 
2?” - 1) 3-l z 0.1958 

‘I * z (2”s ~_. 1)‘5~-13-% z 0.22,2 

Let us compare the optimal regular pipelines for rectangular and triangular plane regions 
as to the length of pipes per unit area. Because of similarity it is sufficient to compare 
the length 1, of n-th order pipes for regions D, of one and the same area o. For a rec- 

tangular region D, whose sides conform to (2.1) and the maximum of these is L, , and 

for an isosceles right triangle with legs of length L, we have, respectively, 

&22_‘!2 = o, L,’ I 2 = 0 (3.10) 

We determine L, in formulas (3.10) in terms of o ,substitute the derived expressions 
and also equalities (3. ‘7) and (3.8j for ‘p* into formulas (3.1) for I, , and obtain 

l = o’i22-3ir3-‘Iz - 0 3423 u’/2 N . 

1:: = rJ1’25-“2 =: 0.44720”’ 

(3.11) 

for rectangles and triangles, respectively. It is seen from (3.11) that the optimal regular 

pipeline with rectangular regions has a smaller length of pipes per unit area than a simi- 
lar pipeline with triangular regions. 

4. Minimization of resistance. With allowance for formula (3.1) the over- 

all volume of the pipeline is N N 

Q = 2 2Ynsn = L, 2 2--n--n4pns* (4.1) 
n=0 n=n 

Let pn be the pressure at the beginning of the n-th order pipe and Q be the total 
fluid flow rate. We assume that the pressure drop in a single pipe is defined by the Poi- 

seuille law for the laminar flow of a viscous incompressible fluid [1] 

Pn -- pm1 = c~q,l,s,-T, q,, = 2-“Q (4.2) 

where p is the viscosity of the fluid, q,, is the rate of flow of the fluid through asingle 
n-th order pipe, and the coefficient c depends on the cross section shape. For pipes of 
similar cross sections (e. g. round) the coefficient r is equal 2. For channels orpipes of 
rectangular cross sections of various widths and constant depth r = 3. The ratio of over- 

all pressure drop p. - pN+l to the flow rate Q through the pipeline in conformity with 
(4.2) and (3.1) is defined by 

(4.3) 

to within the constant factor. 
Let us first consider the limit case of N j 00. We assume that cy, are bounded(e.g. 

are equal to the constant cp*). For series (4.1) and (4.3) to be convergent it is necessary 
that the n-th terms of these tend to zero. From this we obtain the conditions 

s = a pv-l)n = p-12-w+l)nl~, a 
n n n n-ro, p,-+o, n-co (4.4) 
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where an and @, are infinitely small. conditions (4.4) are not incompatible when the 

inequality 
r < (v + 1) / fv - 1) (4.5) 

is satisfied. For a pipeline consisting of channels of constant depth and various widths 
(t = 3) which feeds the two-dimensional region (v = 2) (and also for a pipeline of 
round pipes (r = 2) in the three dimensional case, inequality (4.5) is not satisfied and 
is converted to an equality. Thus the hydraulic resistance Ir’ of such pipelines isunboun- 
ded when volume Sz is finite and ,Y- 30 . When v -- 3 and r = 3 ,inequal.ity (4.5) 
is also violated. It is satisfied only for round pipes (or generally for pipes of similar 
cross sections) that feed a plane region (r == Y - 2) , Only in such case an ~finitely 
branching pipeline of limited volume and finite hydraulic resistance is feasible. If we 

assume 

then both series (4.1) and (4.3) become convergent. 
In the case of finite S we determine cross sections sn by the 4-th hypothesis that the 

hydraulic resistance ff is minimum with respect to sn when restrictions (4.1) on thevo- 

lume are satisfied. Using the method of Lagrange multipliers and calculating the mini- 
mum of R with respect to sn under condition (4. l), we obtain 

‘+lI/(r+l) s, =- s-0’ , ,t = 0, 1 ,. . . (4.7) 

Note that the relationships (4.7) are independent of v,,. Substituting expressions (4.7) 

into the sums (4,l) and (4.3), we obtain 

(4.8) 

so = 52 (L,F)-‘. R -=: ,&,so”‘F = I,;+’ $$-rF’+’ 

Formulas (4.7) and (4.8) determine the cross-sectional areas sn including s0 and the 
hydraulic resistance R of the pipeline for specified cp,, Substituting the expressions 

(3.2) and (3.3) for (r, in formula (4.8) for f, we have in the plane case 

II .--0 

Various problems can be formulated and solved by ~ni~zing the sum (4.9) for F 
with respect to zn for various restrictions on the position of branching points zn. The 
most general restriction is of the form 0 < 2, < 1, where IE = 0, I ,. . ., N. The mini- 
mum of 1’ in (4.9) corresponds according to (4.8) to the minimum of hydraulic resis- 
tance R. The three-dimensional case can be similarly considered with the use of for- 

mula (3.4) for Tn. 
Let us consider regular pipelines which satisfy relationships (3.5) and (3.6). Substitu- 

ting (3.5) and (3.6) into equalities (4.8) we obtain the simple formulas 

F c ‘p+ [2@+r)s - i] (2s - I)_‘, E, + 0 (4.10) 

F - (n: + 1) ‘p*, 8 = 0 (Y = 3, P = 2; v = 2, T = 3) 

The second of formulas (4.10) is valid for pipes in the tree-dimensional case and for 
channels in the two-dime~ional one. 
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Parameters cp* for the optimum regular pipeline are determined by equalities (3.7)- 

(3.9) for the corresponding configurations. Thus in this case all pipeline parameters are 

specified by formulas (3. l), (3.5) - (3.9), (4.7), (4.8) and (4.10). Such pipleline for rec- 

tangular regions is shown in Fig. 2, where the source lies on the longer side of the rectan- 
gle and divides it in the ratio 1 : 3. If we omit in Fig. 2 pipe I, and take its branching 
point as the source, we obtain an optimal regular pipeline with its source at the axis of 

symmetry. The position point of the source and all branching points divide correspond- 
ing sides of rectangles in the ratio 1: 3. Note that the rejection of conditions (3.5) and 
(3.6), i. e. of the condition of regularity, makes it possible to obtain by minimizing the 
sum (4.9) a lower hydraulic resistance than that of the optimal regular pipeline. 

5. Generalization and compariton wfth experiment. The pipelines 
considered above possess the property of similarity (the 3-rd hypothesis) and regular pipe- 
lines have, in addition, a similar disposition of pipeline branches with respect to these 
regions. As shown in Sect. 2, these properties can be strictly achieved only for some par- 
ticular shapes of regions, while for regions of another shape this is not feasible. However 

the determined here configurations appear to have some asymptotic meaning for regions 
of an arbitrary shape. Since after numerous branchings the dependence of the pipeline 

configuration on the shape of the parent region shape levels out - an assumption that 
appears natural- the configuration approaches the derived above. 

Restriction (4.1) on the pipeline volume Q. may be replaced by one imposed on the 
over-all quantity of material or cost of the pipeline. If the thickness of pipe walls is 
assumed proportional to the cross-sectional area of these, the restriction on the quantity 

of material is of the form (4.1). 
In actual system a strict hierarchy of branches is not usually satisfied, hence branches 

of various orders are conventionally combined on a certain principle into one order. 

This means that the pipe of each order is divided in m branches, where m is generally 
a fractional number, and not in two. The regions are in that case not similar, it is, how- 
ever, possible to obtain similar relationships for the lengths and cross sections, which are 
valid in the average. Since at branching of pipes related areas decrease in the average 

by a factor of m , hence for the length of pipes we obtain similarly to (3.1) 

I, = zom+, n = 0, 1 ,. . ., N- (5.1) 

Formulas for volume Q and the hydraulic resistance R are of a form similar to formu- 

las (4.1) and (4.3) 
Q = 1” 5 m--l’--nfi’s@ R = 1, 5 m--n--nv ,;r (5,2) 

n=o n=0 

The condition of minimum R with respect to s, for the fixed volume defined by (5.2) 

yields formulas sn = ,Om-?“i~‘+l~, s0 = sU;V;l, n = 1, 2, . ( .I: (5.3) 

R= 1 s-'F =l++lQ-rFT+l 
00 1 0 1 

Fir 5 m=" = [m~(N+l)-l](m8-1), S#O 
n=0 

F, = iv+ 1, 6=0 

where 6 is determined by formula (4.8), which are similar to (4.7)- (4.9). 
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Let us compare the obtained relationships with experimental data on branching (hu- 
man arteries and lungs) presented in [2]. It is shown there on the basis of a large num- 
bez of observations that for the considered arteries 

m = 3.096, Ig 1, = -0.172 n + const (5.4) 
Ig d, = -0.2015 n + const 

where the usual notation is used and d, is the diameter of the artery. The substitution 
of the expression (5.4) for m into formulas (5.1) and (5.3). and aLso v = 3 and r = 2, 
yields 

Ig Z, = -(n / 3) lg m + const = -0.1636 n -+- const (5.5) 

lg d, = (l/*) lg s, + const = -(n / 3) lg m + const = -0.1636 n + const 

The difference in the coefficients of* formulas (5.4) and (5.5) is 5% for lengths and 
23% for the diameters of vessels. 

Note that the geometry of branching pipelines under the condition of equality of an- 

gles between each pipe and its branches was considered in [3] and in the recently pub- 

lished paper [4]. We note that under such condition the requirement for the similarity 

of regions fed by pipes of various orders specified in this paper is not satisfied. 

The author thanks V. M. Entov for his interest in this work, and V. M. Khaiutin and 
A. M. Mel’kumiants for the valuable discussion of physiological aspects. 
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